Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.982
1.
Environ Monit Assess ; 196(5): 494, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691200

This study investigated the impact of soil type, pH, and geographical locations on the accumulation of arsenic (As), lead (Pb), and cadmium (Cd) in rice grains cultivated in Ghana. One hundred rice farms for the sampling of rice grains and soil were selected from two regions in Ghana-Volta and Oti. The concentrations of As, Pb, and Cd were analyzed using ICP-OES. Speciation modeling and multivariate statistics were employed to ascertain the relations among measured parameters. The results showed significant variations in soil-As, Pb, and Cd levels across different soil types and pH ranges, with the highest soil-As and Cd found in alkaline vertisols. For soil-As and Cd, the vertisols with a pH more than 7.0 exhibited the highest mean concentration of As (2.51 ± 0.932 mgkg-1) and Cd (1.00 ± 0.244 mgkg-1) whereas for soil-Pb, the luvisols of soil types with a pH less than 6.0 exhibited the highest mean concentration of Pb (4.91 ± 1.540 mgkg-1). Grain As, Pb, and Cd also varied across soil types and pH levels. In regards to grain-As, the vertisols soil type, with a pH less than 6.0, shows the highest mean concentration of grain As, at 0.238 ± 0.107 mgkg-1. Furthermore, vertisols soil types with a pH level less than 6.0 showed the highest mean concentration of grain Cd, averaging at 0.231 ± 0.068 mgkg-1 while luvisols, with a pH less than 6.0, exhibited the highest mean concentration of grain Pb at 0.713 ± 0.099 mgkg-1. Speciation modeling indicated increased bioavailability of grains Cd2+ and Pb2+ ions in acidic conditions. A significant interaction was found between soil-Cd and pH, affecting grain-As uptake. The average concentrations of soil As, Pb, and Cd aligned with international standards. Generally, the carcinogenic metals detected in grain samples collected from the Volta region are higher than that of the Oti region but the differences are insignificant, and this may be attributed to geographical differences and anthropogenic activities. About 51% of the study area showed a hazard risk associated with grain metal levels, although, no carcinogenic risks were recognized. This study highlights the complex soil-plant interactions governing metal bioaccumulation and emphasizes the need for tailored strategies to minimize metal transfer into grains.


Arsenic , Cadmium , Environmental Monitoring , Oryza , Soil Pollutants , Soil , Soil Pollutants/analysis , Ghana , Soil/chemistry , Oryza/chemistry , Cadmium/analysis , Hydrogen-Ion Concentration , Arsenic/analysis , Lead/analysis , Agriculture
2.
Sci Total Environ ; 930: 172765, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38692323

The presence of contaminated sites/soils in or near cities can pose significant risks to public health. The city of Viviez (France) was taken in reference site bears significant industrial responsibility, particularly in zinc metallurgy, with the presence of a now rehabilitated smelter. This has led to soil contamination by zinc (Zn), lead (Pb), arsenic (As), and cadmium (Cd), with concentrations reaching up to 4856 mg kg-1, 1739 mg kg-1, 195 mg kg-1, and 110 mg kg-1, respectively. The aim of this study is to comprehend the contamination patterns of the site post-rehabilitation, the geochemical behavior of each element, and their speciation (analyzed through BCR, XRD, and XANES) in relation to associated health risks due to metals accessibility for oral ingestion and inhalation by the local population. The findings revealed that elements inducing health risks were not necessarily those with the highest metal contents. All results are discussed in terms of the relationship between element speciation, stability of bearing phases, and their behavior in different media. XANES is an important tool to determine and estimate the Pb-bearing phases in garden soils, as well as the As speciation, which consist of Pb-goethite, anglesite, and Pb-humate, with variations in proportions (the main phases being 66 %, 12 % and 22 % for Pb-goethite, anglesite, and Pb-humate, respectively) whereas As-bearing phase are As(V)-rich ferrihydrite-like. A new aspect lies in the detailed characterization of solid phases before and after bioaccessibility tests, to qualify and quantify the bearing phases involved in the mobility of metallic elements to understand the bioaccessibility behavior. Ultimately, the health risk associated with exposure to inhabitants, in terms of particle ingestion and inhalation, was assessed. Only ingestion-related risk was deemed unacceptable due to the levels of As and Pb.


Environmental Monitoring , Soil Pollutants , Soil Pollutants/analysis , France , Humans , Arsenic/analysis , Synchrotrons , Lung , Lead/analysis , Zinc/analysis , Metals, Heavy/analysis , Biological Availability , Risk Assessment , Cadmium/analysis , Soil/chemistry
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124325, 2024 Aug 05.
Article En | MEDLINE | ID: mdl-38701574

A Schiff-base Ethyl (E)-2-(3-((2-carbamothioylhydrazono)methyl)-4-hydroxyphenyl)-4-methylthiazole-5-carboxylate (TZTS) dual functional colorimetric and photoluminescent chemosensor which includes thiazole and thiosemicarbazide has been synthesized to detect arsenic (As3+) ions selectively in DMSO: H2O (7:3, v/v) solvent system. The molecular structure of the probe was characterized via FT-IR, 1H, and 13C NMR & HRMS analysis. Interestingly, the probe exhibits a remarkable and specific colorimetric and photoluminescence response to As3+ ions when exposed to various metal cations. The absorption spectral changes of TZTS were observed upon the addition of As3+ ions, with a naked eye detectable color change from colorless to yellow color. Additionally, the chemosensor (TZTS) exhibited a new absorption band at 412 nm and emission enhancements in photoluminescence at 528 nm after adding As3+ ions. The limit of detection (LOD) for As3+ ions was calculated to be 16.5 and 7.19 × 10-9 M by the UV-visible and photoluminescent titration methods, respectively. The underlying mechanism and experimental observations have been comprehensively elucidated through techniques such as Job's plot, Benesi-Hildebrand studies, and density functional theory (DFT) calculations. For practical application, the efficient determination of As3+ ions were accomplished using a spike and recovery approach applied to real water samples. In addition, the developed probe was successfully employed in test strip applications, allowing for the naked-eye detection of arsenic ions. Moreover, fluorescence imaging experiments of As3+ ions in the breast cancer cell line (MCF-7) demonstrated their practical applications in biological systems. Consequently, these findings highlight the significant potential of the TZTS sensor for detecting As3+ ions in environmental analysis systems.


Arsenic , Colorimetry , Density Functional Theory , Thiazoles , Colorimetry/methods , Humans , Thiazoles/chemistry , Thiazoles/analysis , Arsenic/analysis , Limit of Detection , MCF-7 Cells , Ions/analysis , Optical Imaging
4.
J Hazard Mater ; 471: 134364, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38657508

It is well known that arsenic is one of the most toxic elements. However, measuring total arsenic content is not enough, as it occurs in various forms that vary in toxicity. Since honey can be used as a bioindicator of environmental pollution, in the present study the concentration of arsenic and its species (As(III), As(V), DMA, MMA and AsB) was determined in honey samples from mostly Poland and Ukraine using HPLC-ICP-MS hyphenated technique. The accuracy of proposed methods of sample preparation and analysis was validated by analyzing certified reference materials. Arsenic concentration in honey samples ranged from 0.12 to 13 µg kg-1, with mean value of 2.3 µg kg-1. Inorganic arsenic forms, which are more toxic, dominated in honey samples, with Polish honey having the biggest mean percentage of inorganic arsenic species, and Ukrainian honey having the lowest. Furthermore, health risks resulting from the consumption of arsenic via honey were assessed. All Target Hazard Quotient (THQ) values, for total water-soluble arsenic and for each form, were below 1, and all Carcinogenic Risk (CR) values were below 10-4, which indicates no potential health risks associated with consumption of arsenic via honey at average or recommended levels.


Arsenic , Honey , Honey/analysis , Chromatography, High Pressure Liquid , Risk Assessment , Arsenic/analysis , Mass Spectrometry , Humans , Food Contamination/analysis , Poland , Solubility , Ukraine , Water/chemistry
5.
J Hazard Mater ; 471: 134303, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38669921

Despite the widespread use of biochar for soil and sediment remediation, little is known about the impact of pyrolysis temperature on the biogeochemistry of arsenic (As) and lead (Pb) and microorganisms in sediment under reducing conditions. In this study, we investigated the effects of pyrolysis temperature and the addition of glucose on the release and transformation of As and Pb, as well as their potential effects on the bacterial community in contaminated sediments. The addition of biochar altered the geochemical cycle of As, as it favors specific bacterial groups capable of changing species from As(V) to As(III) through fermentation, sulfate respiration and nitrate reduction. The carbon quality and content of N and S in solution shaped the pH and redox potential in a way that changed the microbial community, favoring Firmicutes and reducing Proteobacteria. This change played a fundamental role in the reductive dissolution of As and Pb minerals. The addition of biochar was the only efficient way to remove Pb, possibly as a function of its sorption and precipitation mechanisms. Such insights could contribute to the production or choice of high-efficiency biochar for the remediation of sediments subjected to redox conditions.


Arsenic , Charcoal , Geologic Sediments , Lead , Mining , Oxidation-Reduction , Charcoal/chemistry , Arsenic/chemistry , Arsenic/analysis , Arsenic/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Lead/chemistry , Pyrolysis , Bacteria/metabolism , Soil Pollutants/chemistry , Soil Pollutants/metabolism , Temperature
6.
Chemosphere ; 357: 141974, 2024 Jun.
Article En | MEDLINE | ID: mdl-38615955

The former mining district of Salsigne is situated in the Orbiel valley. Until the 20th century, it was the first gold mine in Europe and the first arsenic mine in the world. Rehabilitation has been performed during the 20 years that followed closure of the mines and factories, which led to the accumulation of storage of several million tons of waste in this valley. Nevertheless, a detailed description of the air quality of this area is still missing. The goal of the present study is to evaluate atmospheric contamination in the valley and identify the potential sources of this contamination. Active monitors (particulate matter samplers) and passive bioindicators (Tillandsia usneoides) were placed in strategic sites including remote areas. Over the year 2022, we assessed the air quality using microscopic and spectroscopic techniques, as well as environmental risk indicators to report the level of contamination. Results indicate that the overall air quality in the valley is good with PM10 levels in accordance with EU standards. Elemental concentrations in the exposed plants were lower than reported in the literature. Among the different sites studied, Nartau and La Combe du Saut, corresponding to waste storage and former mining industry sites, were the most affected. Chronic exposure over 1 year was highlighted for Fe, Ni, Cu, Pb, Sb and As. Pollution Load Index and Enrichment Factors, which provided valuable information to assess the environmental condition of the valley's air, suggested that dust and resuspension of anthropogenic materials were the principle sources for most of the elements. Finally, this study also highlights that using T. usneoides could be a convenient approach for biomonitoring of metal (loid)-rich particles in the atmosphere within a former mining area, for at least one year. These results in turn allow to better understand the effects of chronic exposure on the ecosystem.


Air Pollutants , Air Pollution , Environmental Monitoring , Mining , Particulate Matter , Environmental Monitoring/methods , Air Pollutants/analysis , France , Air Pollution/statistics & numerical data , Particulate Matter/analysis , Metals/analysis , Arsenic/analysis , Metals, Heavy/analysis
7.
Mar Pollut Bull ; 202: 116362, 2024 May.
Article En | MEDLINE | ID: mdl-38615517

In the current study, an environmental assessment of surface seawater in Tangier Bay was conducted by analyzing physicochemical parameters and trace elements, such as As, Cr, Zn, Cd, Pb, and Cu. The results showed mean concentrations (µg/l) of 22.50 for As, 0.46 for Cr, 8.57 for Zn, 15.41 for Cd, 0.23 for Pb, and 1.83 for Cu. While most trace elements met the guidelines, elevated levels of Cd raised concerns about long-term exposure. Pollution indices, including the contamination factor, degree of contamination, and water quality index, indicate the impact of human activities, dividing sites into arsenic-cadmium contamination, wastewater influence, and low pollution levels. Statistical methods, such as ANOVA, revealed no significant differences in trace element levels across the bay. PCA and HCA revealed that Cr, Cu, and Zn originated from common anthropogenic sources, whereas Pb and Cd originated from distinct sources. As indicates that natural geological processes influence its origin.


Bays , Environmental Monitoring , Seawater , Trace Elements , Water Pollutants, Chemical , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Seawater/chemistry , Mediterranean Sea , Risk Assessment , Humans , Metals, Heavy/analysis , Arsenic/analysis
8.
Mar Pollut Bull ; 202: 116337, 2024 May.
Article En | MEDLINE | ID: mdl-38615519

The concentrations of dissolved arsenate in natural water has an important impact on human health. The distributions, seasonal variation and major influencing factors of total dissolved inorganic arsenic (TDIAs) were studied in the Yellow River. The concentrations of TDIAs in the middle and lower reaches of the Yellow River ranged from 4.3 to 42.4 nmol/L, which met the standards for drinking water of WHO. The seasonal variation of TDIAs concentration in the middle and lower reaches of the Yellow River was highest in summer, followed by autumn and winter, and lowest in spring. The influencing factors of TDIAs concentration in the middle and lower reaches of the Yellow River mainly include the hydrological conditions, topographical variation, the adsorption and desorption of suspended particulate matter (SPM) and the intervention of human activities. The absorption of TDIAs by phytoplankton in the Xiaolangdi Reservoir (XLD) is an important factor affecting its distributions and seasonal variation. The annual flux of TDIAs transported from the Yellow River into the Bohai Sea ranged from 1.1 × 105 to 4.5 × 105 mol from 2016 to 2018, which is lower than the flux in 1985 and 2009. The carcinogenic risks (CR) of TDIAs for children and adults were all within acceptable levels (<10-6).


Arsenic , Environmental Monitoring , Rivers , Seasons , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Rivers/chemistry , Arsenic/analysis , China , Humans , Phytoplankton
9.
Sci Total Environ ; 929: 172405, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38626822

Significant spatial variability of groundwater arsenic (As) concentrations in South/Southeast Asia is closely associated with sedimentogenesis and biogeochemical cycling processes. However, the role of fine-scale differences in biogeochemical processes under similar sedimentological environments in controlling the spatial heterogeneity of groundwater As concentrations is poorly understood. Within the central Yangtze Basin, dissolved organic matter (DOM) and microbial functional communities in the groundwater and solid-phase As-Fe speciation in Jianghan Plain (JHP) and Jiangbei Plain (JBP) were compared to reveal mechanisms related to the spatial heterogeneity of groundwater As concentration. The optical signatures of DOM showed that low molecular terrestrial fulvic-like with highly humified was predominant in the groundwater of JHP, while terrestrial humic-like and microbial humic-like with high molecular weight were predominant in the groundwater of JBP. The inorganic carbon isotope, microbial functional communities, and solid-phase As-Fe speciation suggest that the primary process controlling As accumulation in JHP groundwater system is the degradation of highly humified OM by methanogens, which drive the reductive dissolution of amorphous iron oxides. While in JBP groundwater systems, anaerobic methane-oxidizing microorganisms (AOM) coupled with fermentative bacteria, iron reduction bacteria (IRB), and sulfate reduction bacteria (SRB) utilize low molecular weight DOM degradation to drive biotic/abiotic reduction of Fe oxides, further facilitating the formation of carbonate associated Fe and crystalline Fe oxides, resulting in As release into groundwater. Different biogeochemical cycling processes determine the evolution of As-enriched aquifer systems, and the coupling of multiple processes involving organic matter transformation­iron cycling­sulfur cycling-methane cycling leads to heterogeneity in the spatial distribution of As concentrations in groundwater. These findings provide new perspectives to decipher the spatial variability of As concentrations in groundwater.


Arsenic , Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Arsenic/analysis , Water Pollutants, Chemical/analysis , China , Rivers/chemistry
10.
Mar Pollut Bull ; 202: 116360, 2024 May.
Article En | MEDLINE | ID: mdl-38636344

This study aims to explore the potential health risks linked to four heavy metals/metalloids (Pb, Cd, As, Hg) present in four commercially important fish species (Scombromorus commerson, Pseudorhombus elevatus, Thunnus tonggol and Otolithes ruber) in the Persian Gulf. Metals in fish muscle tissue were analyzed via ICP-MS. The analysis revealed that Scombromorus commerson (except for Pb) and Thunnus tonggol (except for As) exhibited the highest and lowest contamination levels, respectively. The Hazard Index findings highlighted arsenic and mercury as the most hazardous elements. However, the Target Hazard Quotient values for each metal and fish species remained within safe thresholds. The highest and lowest Total Carcinogenic Risk was concerning Pseudorhombus elevates (As: 7.41-E05), and Thunnus thonggol (Pb: 3.21-E07), respectively. TCR analysis suggests that the cancer risk of studied metals was below the negligible level (TCR < 10-6) or within the acceptable level (10-6 < TCR < 10-4), potentially not posing carcinogenic risks through extended consumption.


Environmental Monitoring , Fishes , Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Indian Ocean , Risk Assessment , Animals , Arsenic/analysis
11.
Anal Chem ; 96(18): 7155-7162, 2024 May 07.
Article En | MEDLINE | ID: mdl-38652710

Microplastics (MPs) can act as carriers of environmental arsenic species into the stomach with food and release arsenic species during digestion, which threatens human health. Herein, an integrated dynamic stomach model (DSM)-capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICPMS) is developed for online monitoring of the release and transformation behaviors of arsenic species loaded on MPs (As-MPs) in the simulated human stomach. The 3D-printed DSM with a soft stomach chamber enables the behaviors of gastric peristalsis, gastric and salivary fluid addition, pH adjustment, and gastric emptying (GE) to be controlled by a self-written program after oral ingestion of food with As-MPs. The gastric extract during digestion is introduced into the spiral channel to remove the large particulate impurity and online filtered to obtain the clarified arsenic-containing solution for subsequent speciation analysis of arsenic by CE-ICPMS. The digestion conditions and pretreatment processes of DSM are tracked and validated, and the release rates of As-MPs digested by DSM are compared with those digested by the static stomach model and DSM without GE. The release rate of inorganic arsenic on MPs is higher than that of organic arsenic throughout the gastric digestion process, and 8% of As(V) is reduced to As(III). The detection limits for As(III), DMA, MMA, and As(V) are 0.5-0.9 µg L-1 using DSM-CE-ICPMS, along with precisions of ≤8%. This present method provides an integrated and convenient tool for evaluating the release and transformation of As-MPs during human gastric digestion and provides a reference for exploring the interactions between MPs and metals/metalloids in the human body.


Arsenic , Electrophoresis, Capillary , Mass Spectrometry , Microplastics , Stomach , Arsenic/analysis , Humans , Mass Spectrometry/methods , Electrophoresis, Capillary/methods , Microplastics/analysis , Stomach/chemistry , Digestion , Models, Biological
12.
Ecotoxicol Environ Saf ; 276: 116305, 2024 May.
Article En | MEDLINE | ID: mdl-38599158

The heavy metal(loid)s (HMs) in soils can be accumulated by crops grown, which is accompanied by crop ingestion into the human body and then causes harm to human health. Hence, the health risks posed by HMs in three crops for different populations were assessed using Health risk assessment (HRA) model coupled with Monte Carlo simulation. Results revealed that Zn had the highest concentration among three crops; while Ni was the main polluting element in maize and soybean, and As in rice. Non-carcinogenic risk for all populations through rice ingestion was at an "unacceptable" level, and teenagers suffered higher risk than adults and children. All populations through ingestion of three crops might suffer Carcinogenic risk, with the similar order of Total carcinogenic risk (TCR): TCRAdults > TCRTeenagers > TCRChildren. As and Ni were identified as priority control HMs in this study area due to their high contribution rates to health risks. According to the HRA results, the human health risk was associated with crop varieties, HM species, and age groups. Our findings suggest that only limiting the Maximum allowable intake rate is not sufficient to prevent health risks caused by crop HMs, thus more risk precautions are needed.


Coal Mining , Crops, Agricultural , Metals, Heavy , Soil Pollutants , Humans , China , Risk Assessment , Metals, Heavy/analysis , Soil Pollutants/analysis , Adolescent , Child , Adult , Young Adult , Nickel/analysis , Nickel/toxicity , Food Contamination/analysis , Environmental Monitoring , Monte Carlo Method , Oryza , Child, Preschool , Zea mays , Glycine max , Female , Arsenic/analysis , Male
13.
J Water Health ; 22(4): 757-772, 2024 Apr.
Article En | MEDLINE | ID: mdl-38678428

This study investigates groundwater contamination by arsenic and iron and its health implications within the Sylhet district in Bangladesh. Utilizing geographic information system (GIS) and inverse distance weighting (IDW) methods, hazard maps have been developed to evaluate contamination risk across various upazilas. The findings show significant arsenic and iron pollution, particularly in the northwestern part of the district. In about 50% of the area, especially in Jaintiapur, Zakiganj, Companiganj, and Kanaighat where arsenic levels surpass 0.05 mg/L which is the standard limit of Bangladesh. Iron levels peak at 13.83 mg/L, severely impacting 45% of the region, especially in Gowainghat, northeastern Jaintiapur, Zakigonj, and Golabganj. The study employs USEPA health risk assessment methods to calculate the hazard quotient (HQ) and hazard index (HI) for both elements via oral and dermal exposure. Results indicate that children face greater noncarcinogenic and carcinogenic risks than adults, with oral HI showing significant risk in Balagonj and Bishwanath. Dermal adsorption pathways exhibit comparatively lower risks. Cancer risk assessments demonstrate high carcinogenic risks from oral arsenic intake in all areas. This comprehensive analysis highlights the urgent need for effective groundwater management and policy interventions in the Sylhet district to mitigate these health risks and ensure safe drinking water.


Arsenic , Groundwater , Iron , Water Pollutants, Chemical , Groundwater/analysis , Groundwater/chemistry , Arsenic/analysis , Bangladesh , Water Pollutants, Chemical/analysis , Iron/analysis , Risk Assessment , Humans , Environmental Monitoring/methods , Geographic Information Systems , Drinking Water/analysis , Drinking Water/chemistry
14.
Environ Geochem Health ; 46(5): 150, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38578528

This study examined levels of lead (Pb), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), and arsenic (As) in blood, hair, and nails of 18 brick kiln workers from three brick kiln units located around a metropolitan city, Lahore, Pakistan. All the trace elements except Hg and As were detected in the studied matrices of Brick kiln workers. In general, brick kiln workers reflect the highest concentration of Pb, followed by Cd, Cr, and Cu. Of the pollutants analyzed, Pb has the highest mean (min-max) concentrations at 0.35 (0.09-0.65) in blood (µg/mL), 0.34 (0.14-0.71) in hairs (µg/g), and 0.44 (0.32-0.59) in nails (µg/g) of brick kiln workers. Following Pb, the trend was Cd 0.17 (0.10-0.24), Cu 0.11(0.03-0.27), and Cr 0.07 (0.04-0.08) in blood (µg/mL), followed by Cr 0.11(0.05-0.20), Cd 0.09 (0.03-0.13), and Cu 0.08 (0.04-0.16) in hairs (µg/g) and Cu 0.16 (0.05-0.36), Cd 0.13 (0.11-0.17), and Cr 0.10 (0.05-0.14) in nails (µg/g) respectively. Relatively higher concentrations of metals and other trace elements in blood depicts recent dietary exposure. The difference of trace elements except Pb was non-significant (P > 0.05) among studied matrices of workers as well as between Zigzag and traditional exhaust-based brick kilns. The concentrations of Pb, Cd and Cr in blood of brick kilns workers are higher than the values reported to cause health problems in human populations. It is concluded that chronic exposure to metals and other trace elements may pose some serious health risks to brick kiln workers which needs to be addressed immediately to avoid future worst-case scenarios.


Arsenic , Mercury , Metals, Heavy , Trace Elements , Humans , Trace Elements/analysis , Metals, Heavy/analysis , Cadmium/analysis , Pakistan , Lead , Chromium/analysis , Arsenic/toxicity , Arsenic/analysis , Environmental Monitoring
15.
Environ Monit Assess ; 196(5): 480, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38676764

The objective of the current research was to examine the water quality of the River Ravi and the River Sutlej, with a specific focus on potentially toxic elements (PTEs). Additionally, we sought to monitor the sources of pollution in these rivers by gathering samples from the primary drains that carry industrial and municipal waste into these water bodies. Furthermore, we aimed to evaluate the impact of PTEs in surface water on groundwater quality by collecting groundwater samples from nearby populated areas. A total of 30 samples were collected from these three sources: rivers (6 samples), drains (9 samples), and groundwater (15 samples). The analysis revealed that the levels of PTEs in the samples from these three resources having a mean value: arsenic (As) 23.5 µg/L, zinc (Zn) 2.35 mg/L, manganese (Mn) 0.51 mg/L, lead (Pb) 6.63 µg/L, and chromium (Cr) 10.9 µg/L, exceeded the recommended values set by the World Health Organization (WHO). Furthermore, PTEs including (As 84%), (Zn 65%), (Mn 69%), (Pb 53%), (Cr 53%), and (Ni 27%), samples were beyond the recommended values of WHO. The results of the Principal Component Analysis indicated that surface water and groundwater exhibited total variability of 83.87% and 85.97%, respectively. This indicates that the aquifers in the study area have been contaminated due to both natural geogenic factors and anthropogenic sources. These sources include the discharge of industrial effluents, wastewater from municipal sources, mining activities, agricultural practices, weathering of rocks, and interactions between rocks and water. Spatial distribution maps clearly illustrated the widespread mobilization of PTEs throughout the study area. Furthermore, a health risk assessment was conducted to evaluate the potential adverse health effects of PTEs through the ingestion of drinking groundwater by both children and adults. Health risk assessment result show the mean carcinogenic values for As, Cr, Pb and Ni in children are calculated to be (1.88E-04), (2.61E-04), (2.16E-02), and (5.74E-05), respectively. Similarly, the mean carcinogenic values for the above mentioned PTEs in adults were recorded to be (2.39E-05), (3.32E-05), (1.19E-03), and (7.29E-06) respectively. The total hazard index values for As, Zn, Cr, Pb, Mn, Cu, and Ni in children were observed to be (9.07E + 00), (9.95E-07), (4.59E-04), (5.75E-04), (4.72E-05), (2.78E-03), and (5.27E-05) respectively. The analysis revealed that As has an adverse effect on the population of the study area as compared to other PTEs investigated in this study.


Arsenic , Environmental Monitoring , Groundwater , Rivers , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Rivers/chemistry , Arsenic/analysis , Risk Assessment , Humans , Metals, Heavy/analysis
16.
J Environ Sci (China) ; 143: 35-46, 2024 Sep.
Article En | MEDLINE | ID: mdl-38644022

Selenium (Se) in paddy rice is one of the significant sources of human Se nutrition. However, the effect of arsenic (As) pollution in soil on the translocation of Se species in rice plants is unclear. In this research, a pot experiment was designed to examine the effect of the addition of 50 mg As/kg soil as arsenite or arsenate on the migration of Se species from soil to indica Minghui 63 and Luyoumingzhan. The results showed that the antagonism between inorganic As and Se was closely related to the rice cultivar and Se oxidation state in soil. Relative to the standalone selenate treatment, arsenite significantly (p < 0.05) decreased the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, sheaths, leaves, brans and kernels of both cultivars by 21.4%-100.0%, 40.0%-100.0%, 41.0%-100%, 5.4%-96.3%, 11.3%-100.0% and 26.2%-39.7% respectively, except for selenocystine in the kernels of indica Minghui 63 and selenomethionine in the leaves of indica Minghui 63 and the stems of indica Luyoumingzhan. Arsenate also decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenate in the roots, stems, brans and kernels of both cultivars by 34.9%-100.0%, 30.2%-100.0%, 11.3%-100.0% and 5.6%-39.6% respectively, except for selenate in the stems of indica Minghui 63. However, relative to the standalone selenite treatment, arsenite and arsenate decreased (p < 0.05) the accumulation of selenocystine, selenomethionine and selenite only in the roots of indica Minghui 63 by 45.5%-100.0%. Our results suggested that arsenite and arsenate had better antagonism toward Se species in selenate-added soil than that in selenite-added soil; moreover, arsenite had a higher inhibiting effect on the accumulation of Se species than arsenate.


Arsenic , Oryza , Selenium , Soil Pollutants , Soil , Oryza/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Selenium/analysis , Selenium/metabolism , Arsenic/analysis , Arsenic/metabolism , Soil/chemistry , Arsenites
17.
Anal Chim Acta ; 1304: 342554, 2024 May 22.
Article En | MEDLINE | ID: mdl-38637038

BACKGROUND: Many proteins with thiol groups can bind with trivalent arsenic which are termed as arsenic binding proteins, thus change their physiological functions. Therefore, it is vital to analyze the arsenic binding proteins in cells. The Pull-Down strategy based on biotinylated phenylarsenic acid (Bio-PAO(III)) probes is an effective way for analysis of arsenic binding proteins. In this strategy, streptavidin magnetic beads (SA-MBs) was applied to capture the arsenic binding proteins conjugating with Bio-PAO(III) probe. However, strong interaction between SA and biotin makes the elution of arsenic binding proteins not easy. RESULTS: We developed a novel affinity separation strategy to address the challenge of eluting arsenic binding proteins, a key issue with the existing Bio-PAO(III) Pull-Down method. By employing magnetic beads modified with Nα-Bis(carboxymethyl)-l-lysine (NTA-Lys), polyhistidine-tag (His6-Tag), and SA (MB-NTA(Ni)-His6-SA), we established a more efficient purification process. This innovative approach enables selective capture of arsenic binding proteins in HepG2 cells labeled by Bio-PAO(III) probes, facilitating gentle digestion by trypsin for precise identification through capillary high performance liquid chromatography (Cap HPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS). What is more, the magnetic beads can be regenerated by using imidazole as the eluent, and the obtained MB-NTA(Ni) can be reloaded with His6-SA for next use. Our method successfully identified 41 arsenic binding proteins, including those involved in cytoskeletal structure, heat shock response, transcriptional regulation, DNA damage repair, redox state regulation, mitochondrial dehydrogenase function, and protein synthesis and structure. SIGNIFICANCE: This work contributes to a more comprehensive understanding of the toxic mechanisms of arsenic, potentially providing valuable insights for the prevention or treatment of arsenic-related diseases.


Arsenic , Arsenic/analysis , Carrier Proteins , Tandem Mass Spectrometry , Histidine/chemistry , Magnetic Phenomena
18.
Sci Total Environ ; 927: 172149, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38569970

Metalloid co-contamination such as arsenic (As) and antimony (Sb) in soils has posed a significant threat to ecological balance and human well-being. In this study, a novel magnetic graphene-loaded biochar gel (FeBG) was developed, and its remediation potential for the reclamation of AsSb spoiled soil was assessed through a six-month soil incubation experiment. Results showed that the incorporation of iron substances and graphene imparted FeBG with enhanced surface characteristics, such as the formation of a new FeO bond and an enlarged surface area compared to the pristine biochar (BC) (80.5 m2 g-1 vs 57.4 m2 g-1). Application of FeBG significantly decreased Na2HPO4-extractable concentration of As in soils by 9.9 %, whilst BC addition had a non-significant influence on As availability, compared to the control. Additionally, both BC (8.2 %) and FeBG (16.4 %) treatments decreased the Na2HPO4-extractable concentration of Sb in soils. The enhanced immobilization efficiency of FeBG for As/Sb could be attributed to FeBG-induced electrostatic attraction, complexation (Fe-O(H)-As/Sb), and π-π electron donor-acceptor coordination mechanisms. Additionally, the FeBG application boosted the activities of sucrase (9.6 %) and leucine aminopeptidase (7.7 %), compared to the control. PLS-PM analysis revealed a significant negative impact of soil physicochemical properties on the availability of As (ß = -0.611, P < 0.01) and Sb (ß = -0.848, P < 0.001) in soils, in which Sb availability subsequently led to a suppression in soil enzyme activities (ß = -0.514, P < 0.01). Overall, the novel FeBG could be a potential amendment for the simultaneous stabilization of As/Sb and the improvement of soil quality in contaminated soils.


Antimony , Arsenic , Charcoal , Environmental Restoration and Remediation , Graphite , Mining , Soil Pollutants , Antimony/chemistry , Antimony/analysis , Graphite/chemistry , Charcoal/chemistry , Soil Pollutants/analysis , Arsenic/analysis , Environmental Restoration and Remediation/methods , Soil/chemistry
19.
BMC Nephrol ; 25(1): 120, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570752

BACKGROUND: Chronic Kidney Disease of unknown cause (CKDu) a disease of exclusion, and remains unexplained in various parts of the world, including India. Previous studies have reported mixed findings about the role of heavy metals or agrochemicals in CKDu. These studies compared CKDu with healthy controls but lacked subjects with CKD as controls. The purpose of this study was to test the hypothesis whether heavy metals, i.e. Arsenic (As), Cadmium (Cd), Lead (Pb), and Chromium (Cr) are associated with CKDu, in central India. METHODS: The study was conducted in a case-control manner at a tertiary care hospital. CKDu cases (n = 60) were compared with CKD (n = 62) and healthy subjects (n = 54). Blood and urine levels of As, Cd, Pb, and Cr were measured by Inductively Coupled Plasma- Optical Emission Spectrometry. Pesticide use, painkillers, smoking, and alcohol addiction were also evaluated. The median blood and urine metal levels were compared among the groups by the Kruskal-Wallis rank sum test. RESULTS: CKDu had significantly higher pesticide and surface water usage as a source of drinking water. Blood As levels (median, IQR) were significantly higher in CKDu 91.97 (1.3-132.7) µg/L compared to CKD 4.5 (0.0-58.8) µg/L and healthy subjects 39.01 (4.8-67.4) µg/L (p < 0.001) On multinominal regression age and sex adjusted blood As was independently associated with CKDu[ OR 1.013 (95%CI 1.003-1.024) P < .05].Blood and urinary Cd, Pb, and Cr were higher in CKD compared to CKDu (p > .05). Urinary Cd, Pb and Cr were undetectable in healthy subjects and were significantly higher in CKDu and CKD compared to healthy subjects (P = < 0.001). There was a significant correlation of Cd, Pb and Cr in blood and urine with each other in CKDu and CKD subjects as compared to healthy subjects. Surface water use also associated with CKDu [OR 3.178 (95%CI 1.029-9.818) p < .05). CONCLUSION: The study showed an independent association of age and sex adjusted blood As with CKDu in this Indian cohort. Subjects with renal dysfunction (CKDu and CKD) were found to have significantly higher metal burden of Pb, Cd, As, and Cr as compared to healthy controls. CKDu subjects had significantly higher pesticide and surface water usage, which may be the source of differential As exposure in these subjects.


Arsenic , Drinking Water , Metals, Heavy , Pesticides , Renal Insufficiency, Chronic , Humans , Cadmium/analysis , Case-Control Studies , Lead , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/etiology , Arsenic/analysis , Chromium
20.
Environ Monit Assess ; 196(5): 422, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38570386

The exposure to arsenic and mercury in various insect trophic guilds from two mercury mining sites in Mexico was assessed. The two study sites were La Laja (LL) and La Soledad (LS) mines. Additionally, a reference site (LSR) was evaluated for LS. The terrestrial ecosystem was studied at LL, whereas both the terrestrial ecosystem and a stream called El Cedral (EC) were assessed at LS. The study sites are situated in the Biosphere Reserve Sierra Gorda (BRSG). Mercury vapor concentrations were measured with a portable analyzer, and concentrations of arsenic and mercury in environmental and biological samples were determined through atomic absorption spectrophotometry. Both pollutants were detected in all terrestrial ecosystem components (soil, air, leaves, flowers, and insects) from the two mines. The insect trophic guilds exposed included pollinivores, rhizophages, predators, coprophages, and necrophages. In LS, insects accumulated arsenic at levels 29 to 80 times higher than those found in specimens from LSR, and 10 to 46 times higher than those from LL. Similarly, mercury exposure in LS was 13 to 62 times higher than LSR, and 15 to 54 times higher than in LL. The analysis of insect exposure routes indicated potential exposure through air, soil, leaves, flowers, animal prey, carrion, and excrement. Water and sediment from EC exhibited high levels of arsenic and mercury compared to reference values, and predatory aquatic insects were exposed to both pollutants. In conclusion, insects from mercury mining sites in the BRSG are at risk.


Arsenic , Environmental Pollutants , Mercury , Animals , Mercury/analysis , Arsenic/analysis , Ecosystem , Environmental Monitoring , Mexico , Insecta , Environmental Pollutants/analysis , Mining , Soil
...